
Git training
Nicolas Barrier Witold Podlejski

Criscely Lujan-Paredes

Presentation of the Git Software

What is Git?

• Free and open source software

• Light and local use (without internet)

• The most popular Version Control Software (VCS)

• Manages and tracks versions of a project (code, manuscript, data)

• Can be linked with remote server (GitHub, Gitlab)

What is Git for?

• For a single user:

– Track changes (commits) over time with information about when

and what are the changes

– Eventually go back in time

1

– Synchronize the project in the cloud with git servers (GitHub, Git-

lab)

What is Git for ?

• For a collaborative project:

– Track changes (commits) with information about who, when and

what are the changes

– Resolve version conflict when simultaneous changes

– Highlight a specific version of the project (tags)

– New version of a software

– Submitted, revised versions of a paper

– Create derivates of a project (branches)

∗ Production

∗ Development

∗ Feature

– Publish the project (open science)

In short…

Installation and configurations

Installing Git

Windows and Mac

2

Figure 1: Without Git
Figure 2: With Git

3

Download and install Git from https://git-scm.com/downloads.

When done, open Git Bash

Linux

Open a Terminal window and type:

sudo apt install git git-lfs git-flow

Git configuration

On Git Bash or in the Terminal:

• Type git config --global user.name "Firstname Lastname"

• Type git config --global user.email "myadresse@ird.fr"

Note

These two lines identify you in the history of a project.

• Type git config --global --list to see the global git configuration.

4

https://git-scm.com/downloads

Getting started with Git in local

Git architecture

• Workspace: your working directory → your computer

• Local: the local repository → contains the history of your project

• Index: a buffer between Workspace and Local → list of the files that will

be sent from Workspace to Local

• git add : the command to add the file(s) in the Index

• git commit: the command to validate the changes (moves the files from

Index to Local)

Getting started

• Create a folder called training-git by typing mkdir training-git

• Move to the folder by typing cd training-git

• Type ls -alrt

• Type git init

• Type again ls -alrt.

5

Note

A .git folder has appeared. It contains the full history of your project

(Local repository)

• Type git status and git log

First commit

• Create a README.md file. Type git status → README.md is now in

Workspace but not in Index nor in Local

• Type git add README.md and git status

• Type git commit -m "First commit" and type git log

Note

0f0e96a is a short version of the identifier of the commit

6

Second commit

• Open the README.md file, add # Git training and save

• Type git status

• Type git diff

• Type git commit -m "Second commit"

• Type git log

Creating tags

• Open the README.md file and add ## Version v1.0.0.

• Type git add README.md

• Type git commit -m "Third commit"

• Type git tag v1.0.0 and git log

7

• Type git tag to list all existing tags

Ignoring files

It is possible to tell Git to ignore some files by using a .gitignore file.

• Create an empty output.log file and type git status

• Create a .gitignore file and write *.log. Type again git status

The output.log file does not appear as an Untracked file anymore

• Type git add .gitignore and git status

• Type git commit -m "Fourth commit"

8

https://git-scm.com/docs/gitignore

Tip

To list the ignored files, type git ls-files --others --ignored

--exclude-from=.gitignore

Moving in the history

• Type git checkout v1.0.0 → move to a tag

• Type git checkout 0f0e96a → move to a specific commit

• Type git checkout main → move at the latest commit (replace main by

master if the latter is the name of the main branch)

9

Tip

HEAD is a symbolic reference pointing to wherever you are in your commit

history, as shown in git log

Display differences

• Type git diff 0f0e96a v1.0.0 → compares a commit and a tag.

Warning

Order matters when using git diff. Differences are shown with the refer-

ence state considered to be the first argument.

• Type git diff 0f0e96a c6dc2bc → compares two commits.

• Type git diff 0f0e96a HEAD → compares where you are in the history

(HEAD) with a given commit.

Using Git with online server (GitHub)

Using remotes

In addition of saving the history, Git has other advantages. It allows to:

10

• Save a project remotely

– Synchronization with different computers (laptop, HPCs)

• Share a project (codes, packages) with the community

– Reproducible science

To do so, a 4𝑡ℎ component in the Git architecture must be considered: the Remote

repository. It contains a remote version of the history of your project

Remote hosts

There are several remote hosting possibilities:

Commercial hosts:

• GitHub: https://github.com/

• GitLab: https://gitlab.com/

Institutional hosts:

• GitLab IRD: https://forge.ird.fr/

• GitLab Ifremer https://gitlab.ifremer.fr/

11

https://github.com/
https://gitlab.com/
https://forge.ird.fr/
https://gitlab.ifremer.fr/

In the following, we will use GitHub.

Tip

GitHub proposes extra-features for students, teachers and researchers. Visit

https://education.github.com/benefits for more informations

Creation of a GitHub repository

• On your GitHub page, click on Repositories

• Click on the the green New button

• Set the name of your remote repository. Leave the other fields empty

• Click on Create repository

12

https://education.github.com/benefits

Creation of a personal access token

To authentificate, you need to create an authentification token (see GitHub au-

thentification of details for details).

To do so, click on your profile photo and then on Settings:

13

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

Creation of a personal access token

• In the left sidebar, click on Developer settings.

• Under Personal access tokens, click Tokens (classic).

• Select Generate new token and Generate new token (classic).

Creation of a personal access token

• Add a description note and click on the “repo” box, as shown below:

14

• Click on the Generate token box button.

• Copy and save in a .txt file or in a Password manager tool (KeeP-

assXC) the token: this is your password! It should look like something

like this:

ghp_***************************************

Linking Git local and remote

• In Terminal or Git Bash, type the following line:

git remote add origin https://github.com/barriern/git-train.git

Warning

Replac barriern by your GitHub login and git-train by the name of your

GitHub repository.

• It connects your Local repository with a remote one, called origin

• Type git remote -vv

15

Linking Git local and remote

Now that the local and remote repositories are linked, the same thing must be

done with the branches.

• Type git branch -M main by replacing main by the name of the remote

branch on GitHub. It will rename the local branch with the same name.

• Type git push -u origin main

It connects the local and remote main branches (-u option) and sends the commits

to the remote branch

• Type git branch -vv

Linking Git local and remote

Have a look at your repository on GitHub. Tags are missing!

Type git push --tags and refresh the GitHub page.

16

Note

No need to specify the -u origin main arguments since the two branches

are already connected.

Navigate on the GitHub page to see what has been done.

Synchronization from the remote

• In GitHub, click on the README.md file and then on the edit button

• Add a Update from Github line and click on Commit changes

The Remote change of README.md is not yet visible in Workspace!

• In Git Bash or Terminal, type git pull

• Look again at the README.md file on your computer. You should see the

update.

17

Synchronization: conflicts

• On GitHub, add x = 1 at the end of the README.md file. Do not type

pull!

• On your computer, edit the README.md and add x = 2.

• Type git add README.md

• Type git commit -m "Fifth commit"

• Type git push. An error occurs because changes in Remote have not been

pulled in Local.

• Type git pull and git status. An error occurs because there is a conflict

in the README.md file which cannot be solved by Git.

Synchronization: conflicts

• Open the README.md file. You should see:

<<<<<<< HEAD

x = 2

=======

x = 1

>>>>>>> 70a4c105e377db282c0769606960f0afcccdd071

18

Warning

These are conflicts markers. Git does’t know whether to chose x = 1 or x

= 2. This is your job

• Open the file, replace the above by x = 3. Commit and push the changes

Cloning an existing repository

• In Terminal or Git Bash, type cd ..

19

• Now type git clone https://github.com/umr-marbec/git-training

• Type git log to see the full history.

• To update the project, type git pull

Warning

Do not clone or initialize a Git repository in another Git repository!

Create a repository the simple way

To create a new repo more simply than done here:

• Create a repo. on GitHub with a README.md file and eventually a LICENCE

file.

• Clone the repo.

• You are all set!

– The remote and local repositories are synchonized

– The remote and local main branches are synchonized

Conclusion: good practice

• Before starting editing a project, do a git pull

• Commit very often using git commit extensively

20

• Push often as well using git push

• Use git status extensively to know what you have done

Git clients

Git clients: what is it?

Git Clients are softwares that facilitate the use of Git (see Git Guis for a list).

Beside, most code editors include Git functionalities

21

https://git-scm.com/downloads/guis

Figure 3: VSCode

Figure 4: RStudio

22

Git clients

Git clients

Git clients

Figure 5: Netbeans

Going further

Going further…

For those who want, extra slides are available on:

• Git with Large File Storage extension.

• Working with branches, i.e. derivates of a project

23

https://git-lfs.github.com/

Large file storage

To version (reasonably) large files (images, data samples) → Git with LFS exten-

sion.

Warning

Make sure that the remote host is compatible with LFS (GitHub is compat-

ible)

• Type git lfs install to activate the extension

• Create a data.csv file and add Year,Size,Species

• Type git lfs track "*.csv"

A .gitattributes file has appeared, which list all the file extensions managed

by Git LFS.

24

https://git-lfs.github.com/

Large file storage

• Type git add .gitattributes data.csv

• Type git commit -m "Using LFS"

• Type git push

• On GitHub, click on your file data.csv file.

Creating aliases

To create Git aliases (i.e. shortcuts):

• Type git config --global alias.tree log --all --decorate

--oneline --graph

• Type git config --global alias.br branch -vv

• Type git config --global alias.re remove -vv

You can now call the git tree, git br and git re commands.

Creating branches

• Type git checkout -b develop

• Type git status, git br and git tree

• Open the README.md file, add some text and save.

• Type git add README.md

• Type git commit -m "3rd commit"

• Type git br and git tree

25

Switching branch

• Type git checkout main (or git checkout master)

• Type git br

• Open the LICENCE file and add some text in it

• Type git add LICENCE

• Type git commit -m "Third commit"

• Type git tree

26

Merging branches

• On the main branch, type git merge develop -m "merge-develop"

• Type git log and git tree

The merge command puts the commits from the argument branch (here develop)

and puts them into the current branch (here main).

Note

During the merging process, another commit is created

Creating branch from another branch

• Type git checkout -b feature develop

• Create a script.R file

• Type git add script.R

• Type git commit -m "Fourth commit"

27

Creating branch from a commit

• Type git checkout -b feat-com 1831e4e replacing 1831e4e by an ac-

tual commit ID.

• Create a script.py file

• Type git add script.py and git commit -m "Sixth commit"

28

Differences between branches

• Type git diff develop main

You will see the text that has been added to the LICENCE file (69bbd79 com-

mit)

Warning

Order matters: it shows what has been added to main branch compared to

the develop branch

29

Deleting a branch

• Type git checkout main

• Type git branch -d develop

• Type git br

• Type git branch -d feat-com

An error occurs! The suppression of feat-com implies the loss of the d9d02608

commit. To force the suppression, use -D instead of -d.

• Type git branch -D feat-com

Note

The suppression of develop was ok because the content of commit 3rd is

included in the merge.

Reverting a commit

• Type git revert c6dc2bc (replace c6dc2bc by your commit id)

30

Remainder

Basic commands

• git init: initialise a git project (create .git folder)

• git add [files]: add files to list of tracked files

• git commit -m ”message”: validate locally a version of the project

• git status: see the unvalidated and untracked changes

• git checkout [commit]: load the project version corresponding to the

index

• git pull: import the changes from remote project to local

• git push: export the changes from local project to the remote server

Git configuration (mandatory)

• Configure your identity: git config --global user.name "Firstname

Lastname"

• Configure your e-mail: git config --global user.email "myadresse@ird.fr"

Branch handling

• git branch [branch_name]: create a new branch (but you remain on the

previous branch)

• git branch -b [branch_name]: create a new branch and move to this

newly created branch

31

• git checkout [branch_name]: move to the corresponding branch

• git merge [branch_name1] [branch_name2]: merge two different

branch, you may need to resolve version conflict.

• git branch -d [branch_name1]: delete a branch (safe mode)

• git branch -D [branch_name1]: delete a branch (unsafe mode)

Linking with remote

• git clone [URL]: Import an existing project from remote server.

• git remote add origin [URL]: link directly the local repository with a

remote

Authentication of your computer and the remote server

• SSH key: easy way on Linux distributions

– Tuto here: https://jdblischak.github.io/2014-09-18-chicago/novice/g

it/05-sshkeys.html

• Authentication Token

– Tuto here: https://docs.github.com/en/authentication/keeping-your-

account-and-data-secure/creating-a-personal-access-token

Good practices

• Pull before any work on the project

32

https://jdblischak.github.io/2014-09-18-chicago/novice/git/05-sshkeys.html
https://jdblischak.github.io/2014-09-18-chicago/novice/git/05-sshkeys.html
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

• Commit as frequently as possible

• Write explicit commit message

• Push regularly

IDE (graphical user interface) with Git

• R

– RStudio

– Visual Studio Code

• Python

– Spyder

– Visual Studio Code

– Pycharm (all JetBrain softwares)

Sources

• Plateau bioinformatique, Montpellier: Formation Git(Lab) (05/04/2018)

• UMR AMAP (Atelier MAIA P3M), Montpellier: Introduction à GIT

(04/04/2019)

33

	Presentation of the Git Software
	What is Git?
	What is Git for?
	What is Git for ?
	In short…

	Installation and configurations
	Installing Git
	Git configuration

	Getting started with Git in local
	Git architecture
	Getting started
	First commit
	Second commit
	Creating tags
	Ignoring files
	Moving in the history
	Display differences

	Using Git with online server (GitHub)
	Using remotes
	Remote hosts
	Creation of a GitHub repository
	Creation of a personal access token
	Creation of a personal access token
	Creation of a personal access token
	Linking Git local and remote
	Linking Git local and remote
	Linking Git local and remote
	Synchronization from the remote
	Synchronization: conflicts
	Synchronization: conflicts
	Cloning an existing repository
	Create a repository the simple way
	Conclusion: good practice

	Git clients
	Git clients: what is it?
	Git clients
	Git clients
	Git clients

	Going further
	Going further…
	Large file storage
	Large file storage
	Creating aliases
	Creating branches
	Switching branch
	Merging branches
	Creating branch from another branch
	Creating branch from a commit
	Differences between branches
	Deleting a branch
	Reverting a commit

	Remainder
	Basic commands
	Git configuration (mandatory)
	Branch handling
	Linking with remote
	Authentication of your computer and the remote server
	Good practices
	IDE (graphical user interface) with Git
	Sources

